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Abstract--This paper presents a study of the gravitational stability of a salty layer of a fluid subject to an 
adverse temperature gradient as a result of heat absorption. This is intended to model solar ponds where 
an artificial gradient of salt concentration in water is used to prevent convective motions induced by the 
absorption of solar radiation. The stability of the Boussinesq approximation of the Navier-Stokes equations 
is analysed for perturbations of a certain kind imposed on the stationary solution. The marginal states for 
the onset of convection are obtained using a Galerkin method based on a weak formulation of the governing 
equations. The analysis considers solar energy absorption in the layer and assumes prescribed heat flux 
values as boundary conditions for the temperature equation. Results are compared with those obtained 
earlier by different authors for a layer of fluid, heated from below, with linear profiles of both salt 

concentration and temperature. Copyright © 1996 Elsevier Science Ltd. 

INTRODUCTION 

A solar pond is a basin of water where a salinity 
gradient is artificially created in order to prevent the 
convection induced by the absorption of solar radi- 
ation. In a solar pond there are typically three well 
defined zones, as shown schematically in Fig. 1. 

The surface and storage zones are convective zones 
where the temperature can be considered uniform, 
apart from interfacial boundary layers. In the gradient 
zone the salt gradient prevents convection and, as a 
result of solar energy absorption, a gradient of tem- 
perature is established. Water being a poor conductor 
of heat, the gradient zone functions as a transparent 

insulation so that the heat absorbed is trapped and 
stored in the storage zone. 

The gradient zone is thus a double diffusive layer 
of salt and temperature. Since the diffusivities of these 
two components are quite different, instabilities of the 
double diffusive type may occur (cf. Veronis [1]) and 
may lead to steady convective motions, therefore 
decreasing the insulation properties of the layer. The 
main problem of a solar pond is thus to maintain the 
nonconvectivity of the gradient zone and its stability. 

Previous thermohaline convection studies have con- 
sidered a layer with linear profiles for the temperature 
and salt concentration and imposed values for the 
boundary conditions relative to these variables, 
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Fig. 1. Solar pond structure. 
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NOMENCLATURE 

a coefficient [derived from equation 
(17)] 

a ~ ( t ) , a : ( t ) , b ~ ( t ) , b 2 ( t ) , c t ( t )  coefficients, 
equations (68)-(72) 

A~,A,_ , B ~ , B >  C~ constants 
d depth of gradient zone [m] 
D~. D:,  D~ coefficients, equation (82) 
E, F coefficients, equations (88), (89) 
j,, acceleration of gravity [m s 2] 
hd natural convection heat transfer 

coefficient [W m e:C ~] 
i imaginary unit ( , j -  1) 

unit vector pointing upwards 
kv, ks thermal and salt diffusivities [m-" s '] 
K,, thermal conductivity of water 

[ W m ' C  '1 
L differential operator  
p pressure [N m 2] 
Li ,  L2 L ~ , m ~ , m ,  coefficients, equations 

(68) (72) 
q(d) heat flux at upper boundary (z = d) 

[W m -'1 
O rate of energy generation per unit 

volume [W m 3] 
q~, extracted heat flux in lower convective 

zone [W m 2] 
q~,b~ absorbed heat flux in lower convective 

zone [W m 2] 
R~, Rs Rayleigh numbers for temperature 

and salinity 
s eigenvalue, equation (82) 
S salinity [kg m ~] 
t time [s] 
T temperature [C]  
T(d)  temperature value at top boundary 

[ C] 

T ,  upper convective zone temperature 
[c] 

u, v, w velocity components  [m s ~] 
v velocity field 
x, y, z Cartesian co-ordinates. 

Greek symbols 
coefficient of  thermal expansion [ C '] 

fl coefficient of salt expansion [m 3 kg ~] 
) cell typical length in the x direction [m] 
P, Pm density and mean density [kg m -3] 
~p,, ~, o), trial functions 
r inverse Schmidt number 
~ stream function 
v kinematic viscosity [m e s '] 
I~ extinction coefficient [m ' ]  
a,: shear stress [N m z] 
(o, frequency of oscillation [s ~]. 

Superscripts 
(x) undisturbed variable 
(2) perturbed variable 
(.(9 a dimensional variable 
(2) time derivative. 

Special symbols 
A T = T ( O ) -  T(d)  thermal difference 
A S  = S ( O ) -  S (d )  saline difference. 

?2 8: 8: 
V ~ = - + - -  + .. 

?x  2 8)"- ~z'- 

#t @ ~7)' @ 
d(.l;g) - ~_v ~z ~?z ?x" 

Veronis [I, 2], Schechter et al. [3]. However solar 
ponds seldom show linear profiles of both salinity and 
temperature, and the prescription of boundary values 
relative to these variables may not be adequate. The 
objective of this paper is to present an analysis where 
a physically more realistic hypothesis regarding the 
temperature profile is made. 

The modelling of the gradient layer is based on 
the Boussinesq approximation of  the Navier Stokes 
equations [2 5] 

momentum equation 

{v 1 
+ ( v ' V ) v  = -- riP, - V p + g ( ° ~ T - f i S ) f I + v V ~ - v  ( l)  z 

continuity equation 

V-v = 0 (2) 

heat diffusion 

?T  4 
g} + v . v r =  kTV~-r+ pCp (3) 

salt diffusion 

8S 
+ v ' V S  = ksV2S (4) 

( I  

state equation 

p = pm(l - - :~T+f lS) ,  (5) 

where 

= - / t  ( 6 )  

For the sake of notat ional  simplicity, T denotes the 
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temperature differential measured relative to 
a reference temperature for which p assumes the 
value pm. 

As shown in Fig. 1, a Cartesian coordinate system 
(x, y, z) is employed, x and y being the horizontal axis 
and z the vertical axis pointing upwards. The solar 
pond is supposed infinite in the x- and y-directions. 
The analysis assumes a purely two-dimensional situ- 
ation where all variables depend exclusively on the x- 
and z-coordinates and on the time t. 

The steady-state solutions are obtained by making 
the velocity v and all time derivatives equal to zero in 
equations (1)-(5). The stability of the gradient layer 
will be studied by superposing perturbations upon 
these steady-state solutions. 

In the present paper the time evolution of these 
perturbations is analysed by using a weak formulation 
of the governing equations and a Galerkin method to 
obtain approximate solutions. Therefore this pro- 
cedure leads in the end to a nonlinear system of 
ordinary differential equations. 

The study of the stability of the double diffusive 
layer, i.e. the conditions for which the layer remains 
nonconvective, is based on the linearization of this 
system of ordinary differential equations. 

In order to gain some insight into the nonlinear 
dynamic behaviour of the double diffusive layer the 
nonlinear system of ordinary differential equations is 
solved by a numerical method and the results are 
represented in a properly chosen phase space. 

STEADY-STATE SOLUTION 

The steady-state equation for salinity Ss(z) is 
obtained from equation (4) by setting the time deriva- 
tive to zero 

~ 2 S  s 
- 0 .  (7) 

0z 2 

The boundary conditions for this equation are 
obtained assuming that the storage zone is near satu- 
ration and that salinity is kept low at the surface zone. 
These two zones can be considered as having infinite 
capacity allowing therefore the values of salinity at 
the boundaries of the gradient zone to be imposed, 
i.e. 

Sslz=o = S o  (8a) 

SSI~=d = S]. (8b) 

Under these assumptions the steady solution of the 
salt diffusion equation (4) is simply 

S 1 - S 0 
Ss (z) = d z + So. (9) 

The steady-state solution Ts(z) for the temperature 
is determined considering that the absorption of solar 
radiation can be modelled by an extinction coefficient 
p that takes into account the transparency of the fluid 

(Lambert law). The rate of energy generation per unit 
volume in the layer can thus be expressed by 

tl(Z ) = q ( d ) # e x p ( - # ( d - z ) )  (10) 

where q(d) is the heat flux due to solar radiation at 
the upper boundary of the gradient zone, (z = d). 
Under these hypotheses the steady-state heat diffusion 
equation (3) in a layer with heat generation becomes 

~2 Ts ~t(z) 
- ( l l )  

0z 2 Kw 

At both boundaries of the gradient zone, the heat 
flux is prescribed as follows : 

0Ts = -- ~q  (12a) 
c~z ~=o Kw 

c3Ts = hd (Ts (d ) -  To~) (lZb) 
Oz .-=d Kw 

For  the top boundary, equation (12b), the heat flux 
from the gradient zone must be equal to the heat 
transferred to the surface zone by convection. In this 
equation Ts(d) is the temperature at the top boundary, 
To is the surface zone temperature (Fig. 1), h a is 
the convective heat transfer coefficient and K,  is the 
thermal conductivity of the water. For  the lower 
boundary, equation (12a), the heat flux - Kw (O Ts/OZ) 
is equal to the heat flux q coming from the storage 
z o n e .  

Since the bottom of the pond is considered to be 
perfectly insulated, the heat flux from the storage zone 
must be equal to the difference between the total heat 
absorbed in the storage zone per unit area qabs and the 
total heat extracted per unit area in the same zone qext 

q = qabs--qext (13) 

thereby guaranteeing a global energy balance. 
Given the asymptotic behaviour of the radiation 

absorption in the pond and in order to simplify the 
resulting expression, we assume for the calculation of 
the total heat absorbed in the storage zone qabs an 
infinite height of the lower convective zone, and so 

= [0 q(z)dz = q ( d ) e x p ( - # d ) .  (14) qabs 
d-  cc 

The heat flux extracted can be conveniently rep- 
resented as a f rac t ionfof  the total heat flux absorbed 
in the bottom convective zone and thus, it may be 
written according to 

q = q,bs--qext = (1 --f)q,bs = (1 - - f )q(d)  e x p ( - p d ) .  

(15) 

The steady-state temperature profile Ts(z) is easily 
obtained solving equation (1 l) with boundary con- 
ditions (12a) and (12b), leading to 
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Table 1. 

T~ = 20'C 
K ~ = 0 . 6 W m  ' C ' 
hd= 100Wm : C I 

50Wm 2 for/~=0.2 
q (d )= (6 6 W m 2 fo r#=0 .8  

, q(d) 
Ts(z) = T, ~--~--exp(-pd) 

[''1 +q(d)  ha + Kw~i " 116) 

The steady-state salt and temperature solutions, 
equations (9) and (16) for the case of zero energy 
extracted at the bottom ( f =  0) and the typical values 
shown in Table 1, are presented in Fig. 2. 

These profiles seem to yield a more realistic rep- 
resentation of the experimental data obtained in solar 
ponds [6-8], as compared with the linear profiles used 
in previous analysis. 

The worst situation for the onset of  instabilities 
occurs when there is no heat extraction from the pond. 
i.e. when f = 0, and thus with a stronger temperature 
gradient. In this case equation (16) turns to 

[exp(/tz)7 . [- 1 1 1 
r = ( z )  = T,-aL j+q(a)L  + 117) 

where 

a = ~ )  exp( - ffd). (18) 

LINEAR DYNAMIC STABILITY ANALYSIS 

The downward increase of the fluid density p in the 
gradient layer is not sufficient to guarantee its stability. 
In fact, double-diffusive phenomena can lead to insta- 

bilities even when ~p/~z < 0 as shown by Turner  [9], 
thus making a dynamic analysis unavoidable. 

To conduct this analysis two approaches are poss- 
ible : to solve approximately the governing equations 
(1) (5) using, for example, a Fourier type expansion 
for the dependent variables as in refs. [1, 3, 4] or to 
cast those equations into a weak form followed by a 
Galerkin type approximation [10, 11]. As this later 
procedure was more amenable to the introduction of 
natural boundary conditions it was chosen for the 
present study. 

Problem jormulat ion 
The continuity equation (2) can be identically satis- 

fied by introducing the stream function ¢ defined by 

v = (u, v, w) = /? .~  d , 0, - (19) 

as a dependent variable replacing the velocity v. 
The dependent variables ¢, T and S are expressed 

as the sum of the steady-state and perturbation terms. 
Therefore, ¢, T and S can be written as 

O(x,z ,  t) = Cs(Z) + t~(x, z, t) (20) 

T(x,  z, t) = Ts(z) + 7~(x, z, t) (21) 

S(x ,  z, t) = Ss(z) + S(x ,  z, t), (22) 

where (-) denotes a perturbation term. The set of 
equations (1) (5) then becomes 

(P,~ & 

~ 

(23) 

(24) 

(25) 

Salinity [kg m-31 
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Fig. 2. Steady salt and temperature profiles ( f =  0). 
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The Jacobian J(~t, V2~) in equation (23) results 
from the dot product v" Vv from equation (1), where 
v is expressed in terms of the stream function. In 
equation (24) the Jacobian J(~, ~) results from 
- v - V T  from equation (3) and in equation (25) the 
Jacobian J(~, S) results from - v- VS in equation (4). 
These Jacobians are the only nonlinear contributions 
to the right hand side of equations (23)-(25), and they 
reflect the effects of  convection. 

All the perturbations, ~, T and S are assumed to be 
periodic in x with period 2, implying that all motion 
takes place in a cell ]0, 2[ x ]0, d[. 

It should be noted that since the steady state solu- 
tions were defined as corresponding to v = 0, ~bs(Z ) is 
identically zero. 

At the interfaces of the gradient zone it is assumed 
that no vertical motion takes place, i.e. 

wl:=0 = 0, wlz=~ = o (26) 

which are equivalent to : 

~3~b[ = 0 ,  O~x~ = a = 0 .  (27) 
~Xz= 0 

Moreover, as a simplifying hypothesis usually made 
in double diffusive problems, shear free boundaries 
are assumed at the interfaces. Since shear stress is 
given by 

a= = kt ~x + ~z (28) 

replacing the components of velocity in terms of 
stream function components yields 

a= = # ( -  ~20 + O2ff~ (29) 
Ox ~ ~z ~ )" 

Introducing conditions (26) and (27), equation (29) 
gives the boundary conditions 

o ~ 0  a=[:=0 = Oz 2 ~=0 = 0 (30a) 

0 2 0  
a=lz=a = 0 gz 2 :=a = 0. (30b) 

The stream function is defined within an additive 
constant and therefore ~, is set to zero at z = 0. Since 

fo' O(d) = O(O) + dz = ~k(O) + u(x, z) dz = 0(0) 

(31) 

by the mass conservation principle, it follows that : 

~b[,=0 = 0 (32a) 

@L=a = 0. (32b) 

Boundary conditions for S and T are 

Sh=0 = Ssl~=0 + gl~=0 (33a) 

Sl:=~ = SsL=~+~l:=~ (33b) 

0T ~Tsl 0/~ 

~z ~:0 - - - '  + ~ 2 : 0  
(34a) 

- ez [~=0 

_ ~ = a  = OT s OT 
~-~-z =a+ ~z  = a. (34b) 

From the boundary conditions stated for the steady 
states for both salinity and temperature, the following 
expressions result : 

(35a) 

(35b) 

gl:=o = 0 

'-'~--=a = 0 

O-S~=o = 0  

0~-z~: a h a l  

(36a) 

(36b) 

The set of equations (23)-(25) involving the per- 
turbed variables ~, 7 ~ and S can be non- 
dimensionalized by introducing the following non- 
dimensional variables denoted by (^) : 

v = ( ~  ~ = k T ~  7~=(AT)7 ~ ~q=(AS)~ 
\ " /  

x = d 2 ,  y = d f : ,  z = d 2  

(37) 

t = i (38) 

where 

R, = g°tATd~3", Rs - gflASd~3 (45) 
kxv krv 

are, respectively, the thermal Rayleigh number and 
the salinity Rayleigh number. 

1 V2 1 ~ 2  
V = ~ = d2 (39) 

AT 
# = • a = ~ - -  (40) 

pd 2 k s 
- pmvk T T = kT' (41) 

The following set of nondimensionalized equations 
is therefore obtained : 

(42) 

/ 
~'~ - V  ) T  = J((I, f ' ) -  ~x  t i [exp(~)--f]  (43) 

~ = 4 0 ,  s ) ,  (44) 
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From equations (32) (34) the following boundary 
conditions are derived for the nondimensional equa- 
tions (42) (44) : 

~l: .... = ,/)l__. , = 0 (46b) 

= ~,22 ~ . = 0  (46c) 

~l ,  o =~1~ ; = 0  (46d) 

SI~.~, = S ' I :  , = 0  (47a) 

Jl 
2k]~ =(, = ?2 ~: ; = 0 (47b) 

~;~ = 0  .... (48a) 

[?T _ ha d 7~ (48b) 
?5 ~:1 K¢ 

= Z'? ~:: ; (48c) --/?..:: ~ = .  = O. 

The sign (~) denoting nondimensional  variables will 
be dropped with the understanding that from now on 
all variables are nondimensional.  

To obtain the coefficients b,, r is required to be 
orthogonal  to the subspace .~, of trial functions, i.e. 

fn r~odxdz = 0 Vq0e.~. (53) 

Since ~0~ forms a basis of,~,,, this is equivalent to the 
following system of equations. 

fQ rq),dxdz=O, j =  1 . . . .  n (54) 

o r  

,~fnL(b;~o~)~o, dxdz=fn. /o~dxd; ,  j = l  . . . .  n. 

(55) 

The usual integration by parts is invoked to reduce 
the order of the derivatives present in the left hand 
side of equation (55), and at the same time incorporate 
the natural  boundary conditions if necessary. Starting 
from equations (44), the following expression is 
obtained : 

\{ ~t - ~V S,, + ('} X - J ( O , ,  S,))q~jdf~ = 0 

(56a) 

Approximate )ormulation 
The problem (42)-(44) will be recast into a weak 

formulat ion similar to those used in Finlayson [10] 
and Magen et al. [11]. 

For  the sake of brevity the salinity equation will be 
employed to illustrate the procedure adopted,  the case 
for the remaining equations offering no addit ional 
difficulties. 

Equation (44) will be written in the form 

LS = ./i (49) 

where L denotes the differential operator  defined by 

L(.) = (~t  - r V 2 ) ( . ) - J ( ~ ,  .). (50) 

S is considered to be approximated by the following 
linear combinat ion : 

S(x,z,t) ~ S,,(x,z,t) = ~ h;(t)~o;(x,z), (51) 
i l  

where the ~o;s are linearly independent functions gen- 
erating the subspace ,~,,, of trial functions. Note that 
equation (51) clearly decouples the time and spatial 
dependencies. The residual of equation (50) is given 
by 

r = L S , , - f  = L(  ~,,,.=, bi~oO-jl (52) 

o r  

- i n  J(t),,, S,,)q0, d ~ -  z (V2S,)qo/df~ = 0. (56b) 

An integration by parts in the last term leads to 

; (V2S")~Pid~=fnV(VS")q°Jd f~(57a)  

o r  

I (V2S,)(p/df~ = (VS, • n)~pj d r -  VS, • Vq0, d~,  
d ~  dr- J n  

(57b) 

where F denotes the boundary of ~.  
The boundary conditions (47) imply that  the inte- 

grals over the boundaries r are zero, and since ~o must 
satisfy the essential homogeneous boundary 
condition, expression (57) turns to 

f (v2S")~p;df~ = - - f  VS,,'Vq~/dfL (58) 
2 1 

Thereby equation (56b) becomes 
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fn ~-~ rPjdO + z fn VSn " Vq~j df~ 

+fo~-~ojdn-fos(~.,s°)~o~dta=O. (59) 

By an analogous procedure, the weak formulation 
for T obtained from equation (43) is 

fn VToV jdn- fo ¢, df~ + Jn J(~b., T.)~j df~ Ti- 

+ fn ~x" a[ exp(~z) - f ]~ j  d~ = 0 (60) 

and from equation (42) the weak formulation for @ is 

+ r ( R ' O T " - R s ~ - ~ )  ~ 

1 f j(~b,,V2~k,)~ojdfl = 0. (61) 
Pr Jo 

The framework presented above allows for an arbi- 
trary value of n. The choice of the actual value is 
dictated by the need on one hand to represent the 
physics of the problem at least within engineering 
accuracy and on the other hand to keep the com- 
putational complexity at a reasonable level. 

The value n = 2 was adopted in the present study. 
Greater values of n were tried leading to a negligible 
improvement, but at the cost of an exaggerated 
increase in complexity. The trial functions for S, T 
and ~b considered are 

$2 = bl(t)tp~(x,z)+b2(t)tp2(x,z) (62) 

with 

~o~ (x,z) = z(1 - z )  ; 

with 

T2 = a, (t)~, (x, z) + a2 (t)~2 (x, z) 

q~2(x,z)=z(l- z) cos(~-~) 

(63) 
(64) 

~j(x,z)  = ~01(x,z) and ~2(x,z) = ~pz(X,Z) 

(65) 

~k, = c, (t)o~, (x, z) (66) 

where 

2 f (x, z ) = z  (1--z) sin~--~-). 0) I (67) 

Experiments revealed that the results were not 
overly sensitive to the choice of trial functions pro- 

vided that the underlying essential physical features 
were well modelled. 

For S, the choice of the basis functions for the 
subspace ~ ,  was dictated by the following reasons: 
the need to satisfy the essential boundary conditions, 
i.e. equations (47), to satisfy the periodicity in x and 
to retain only terms up to the second degree in z. 

For simplicity, and according to equations (48), the 
trial functions for T were chosen to be similar to S. 
The trial function proposed for ~O verifies the essential 
boundary conditions (46b) and (46d). Boundary con- 
ditions (46a) and (46c) need not be satisfied in a weak 
formulation context. 

After substituting (62) and (63) into equation (59), 
two ordinary differential equations for the time depen- 
dent coefficients bj(t) and b2(t) are obtained, the 
details are given below. Substituting equations (64) 
and (65) into equation (60), two ordinary differential 
equations for the time dependent coefficients al (t) and 
a2(t) are also obtained. Finally, after substituting 
equations (66) and (67) into equation (61) an ordinary 
differential equation for the time dependent coefficient 
c~(t) is obtained. 

Collecting these results, the following system of 
ordinary differential equations for the coefficients 
al ( t), a2 ( t), bl ( t), b2 ( t), cl ( t) is obtained 

7~ 
a l  = - - l O a l  + -[-4~cla2 (68) 

2 - ~  _ 
a2 -= -- ~L2a2 a(ml +60m2 --f)  + 7al cl 

where 

bl = - lOzb l  + -~2clb2 

b2 = - ~ z L z b : - - ~  l +-~b, cl 

7 
el = -- 2PrL1L3Cl - ~ PrLi ~2(Raa2 -- RsbO, 

(69) 

(70) 

(71) 

(72) 

1 522 + 2rr 2 
LI - L2 - - -  

(722 +2g  2) ,~ 

10524 + 28j.2~ 2 +4n  4 
Z s - -  22 

120 exp(#)[p3 _ 9~2 + 3 6 # -  60] 

(73) 

m I ~6 

6(.//2 + 8,u + 20) 
D'~ 2 - -  #6 (74) 

Within the validity of the approximations made, 
the solar pond stability is therefore reduced to the 
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study of  the stability of  the above system of ordinary 
differential equations. 

The marginal states 

Equations (68) (72) form a nonlinear system of 
ordinary differential equations whose stability is 
difficult to assess. As usual in such circumstances the 
present analysis proceeds by linearization about the 
origin (the steady state), therefore neglecting all 
second-order terms. 

The following linear system of  ordinary differential 
equations is thus obtained : 

01 = - 10al (75) 

2 
{t~ = -- _L~_a 2 - =[a(nt I +60m~_- f ) ]c l  (76) 

A A 

]~1 = - 10rbl (77) 

2 rc 
]~ = - _ * L z h 2 -  7el (78) 

A 

7 
(h = -- 2PrL,  L~cl - ~ PrLI rcft(R~,a2 - Rs32). 

(79) 

Solutions for these sets o f  equations o f  the form 

I 
al( t )  = At exp(st) 

a~_(t) = A2 exp(st) 

b~ (t) = B~ exp(st) (80) 

h~( t )  = B~ exp(st) 

c[(t)  = C[ exp(s , )  

are searched for, where s is a complex number and the 
A~s, Bi~s and C~s are constant amplitudes. Substituting 
these relations into equations (75) (79). the following 
homogeneous system of algebraic equations is 
obtained : 

with 

where 

P5 (S) = (S + l 0) ( S +  10I ')p 3 (S) (82) 

P3 (S) = 5 '3 + O1,'¢ 2 + D2 s + D3, (83) 

2L~ 
DI = ~ ( T + I ) + 2 P r L t L ~  (84) 

A 

4L,/L~ ) 
D~ = - ~ - ~ +  2 [ 2  ( r + I ) P r L I L ~  

7~ 2 
+ ~ P r L I ( R s - - A R D  (85) 

8TPrLIL~L3 77z ~- 
D3 + ~ , ~ P r L ~ L 2 ( R s - A z R . , , ) .  

Z A  

(86) 

Since s = - l 0  and s = - 1 0 ~  are negative zeros 
of  the polynomial ps(s), the stability of  system (80) 
depends on the nature of  the roots of  the third-degree 
polynomialp3(s) in equation (82). The following cases 
must be distinguished according to the nature of  the 
real part, Re(s) ,  of s: 

(a) Re(s)  < 0, corresponds to an exponential decay 
of  the perturbations : the steady state is asymptotically 
stable ; 

(b) R e ( s ) >  0, corresponds to an exponential 
growth of  the perturbations leading to unbounded 
linear instability, with no physical meaning ; 

(c) Re(s) = 0. Two situations must be considered : 
s 4:0 and s = 0. 

Case Re(s) = 0, s ¢ 0. For  s 4 :0  one can write 
s = io0, where oJ0 is a real number and represents the 
angular frequency of  the perturbation, corresponding 
to the onset of  periodic motions sometimes referred 
to as overstability. Substituting s = iw0 in the third- 

7 7 
2PrL~ L~ + s 0 4 PrL  r n).R,, 0 - 4 PrLI ~z).Rs 

0 10 + s 0 0 0 

z ,4 0 L2 + s 0 0 
A A 

0 0 0 10~ + s 0 

7r 2 

e l  

AI 

A 2 = 

BI 

B~ [i1 (81) 

where A = a(m~ + 60m 2 - f ) .  
For  this system to have nontrivial solutions it is 

necessary that d e t ( M ) =  0, M being the matrix of  
system (81). This relation yields a fifth-degree poly- 
nomial equation in s, which may be written as 

degree polynomial p3(s) of  equation (83), two equa- 
tions are found : one for the real part and another for 
the imaginary part. The second yields an expression 
for coo, which when substituted in the first produces 
the equation corresponding to the marginal state for 
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the onset of oscillatory motions, resulting in the fol- 
lowing expression for the marginal states : 

[Pr+zF\ 16 ~(1 +z)L2(Pr+zF) 
Ra= E[-~r~)Rs+--~-Iz ~ ' 

where 

and 

(87) 

1 
E = f(~) = ~ (88) 

(522 + 2n2)(722 + 2n 2) 
F = f(2) = (89) 

10524 + 28/17222 -~- 47~ 4 

The frequency of oscillation o90 is given by 

4 L  2 I'L2z \ 
09°  = T I T  +erL,L3(1 

7 z 
+ ~PrL,n (Rs-AR,). (90) 

Case Re(s) = 0, s = 0. Substituting s = 0 in equa- 
tion (82) D3 - 0 is obtained and from equation (86) 
it follows that : 

R,= E1Rs + I~ E L2L3 (91) 
n22 • 

Note that when s = 0 the functions a~(t), a2(t), 
b~ (t), b2(t) and cl (t) are constant. This means that the 
convective motion has constant amplitude (inde- 
pendent of time), i.e. steady convective motion. 

It may be noted that in equations (87), (90) and 
(91) the influence of the radiation absorption in the 
layer is conveyed by the parameter E, which depends 
exclusively on the value of the extinction coefficient #. 

It can be easily verified that for large Rs values, as 
is usually the case for solar ponds (Rs of the order 
of 109) ,  the second terms on the right hand sides of 
equations (87) and (91) are much smaller than the 
first terms, and therefore can be neglected. This leads 
to the relation 

Pr+zF 
R. = E ~  Rs (92) 

and 

1 
R a = E - R s ,  (93) 

T 

which are both similar to the results earlier obtained 
by Veronis [1] 

Pr+z 
R a - R s (94) Pr+ l 

1 
Ra = -Rs .  (95) 

and 

Note that for oscillatory motion to occur the value 
of COo must be real, which is equivalent to saying that 
coo 2 > 0. Thus, the region where oscillatory motions 
can take place is defined by 

[Pr+zF\ 16 ~(1 +z)L2(Pr+zF) 
Ra > E [ ~  )Rs + --~- t~ ~PrLI-~ (96) 

and 

16EL2[Lzz + PrL1L32(l + z)] (97) 
Ra < ERs+ 7 n2PrL~22 

this last inequality resulting from the imposition of 
condition o92 > 0 in equation (90). 

The value of 2 that minimizes the right hand side 
of inequality (97) corresponds with the worst case for 
oscillatory motion to take place. To obtain this value, 
and for the sake of definiteness and exemplification, 
the following typical values for solar ponds are 
employed : 

Pr= 7; z=0 .01 .  

This leads to a value of 2 

2 = 2.1298. 

Note that the nondimensional 2 can be interpreted 
as the aspect ratio of the cells of the oscillatory motion. 
This value will be retained for the remainder of this 
study. 

For  the minimum value of 2 mentioned above, the 
marginal states corresponding to equations (87) and 
(91) are therefore 

R, = 0.9249ERs + 52.93E (98) 

Ra = 100ERs + 1827.0E. (99) 

Increasing the dimension of the subspace of trial 
functions, within the constraints imposed by the 
physical problem, leads to a large increase of the 
algebraic complexity with no significant change on the 
final result. As an example for a subspace of dimension 
three the value of 2 obtained was 2 = 2.2925 as com- 
pared with the previous value of 2 = 2.1298 obtained 
for a subspace of dimension two. 

RADIATION ABSORPTION CONTRIBUTION FOR 
THE MARGINAL STATES 

Solar pond transparency has been studied for a long 
time. Rabl and Nielsen [12] proposed a sum of four 
exponentials, each one with its own extinction 
coefficient corresponding to the division of the solar 
spectrum in four wavelength intervals. In fact, the 
extinction coefficients proposed by these authors were 
obtained by measurements made on pure water and 
not on a real pond water which is generally affected 
by dust, debris and dissolved salts that decrease trans- 
parency. As stated before, the present study considers 
the absorption of radiation in the pond to have an 
exponential decay of the form 
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q(z)  = q ( d ) e x p ( - I ~ ( d - z ) )  (100) 

based on a single extinction coefficient/t. The values 
of/~ are obtained by a least squares fitting of equation 
(100) to the experimental values of radiation absorp- 
tion in pure water and in samples obtained from an 
experimental solar pond [13, 14]. 

Pure water corresponds to the minimum radiation 
absorption, i.e. good transparency. The water from 
the experimental solar pond represents the situation 
of weak transparency corresponding to higher values 
of~t. The values of/~ obtained by the fitting procedure 
for a pond with an upper convective zone of 0.5 m 
and a gradient zone of I m are, respectively, for pure 
water /~ = 0.2 and for the experimental solar pond 
/ / = 0 . 8 .  

As noted before the contribution of radiation 
absorption for the stability of the gradient zone is 
conveyed by the parameter E of equations (87) and 
(91) which depends exclusively on It. 

It is clear that for low values of p the pond will 
develop greater gradients of temperature for the same 
value of the solar energy input. In this sense a good 
transparency pond will be more susceptible to insta- 
bilities than a poor transparency one. 

However, in order to analyse the influence of radi- 
ation absorption in the stability of the gradient zone 
the comparison must be made for a situation where 
the same gradient of temperature is developed in the 
gradient zone, i.e. a situation where the value of R~, is 
the same for both profiles (/~ = 0.2 and it = 0.8). This 
situation is seen in Fig. 2 where the two steady-state 
temperature profiles were obtained for different solar 
energy inputs. 

Figure 3 presents the marginal states 1or the onset 
of oscillatory motions, equation (87), for the two 
values of the extinction coefficient presented above, 
together with the marginal state obtained earlier by 
Veronis [1]. This figure was obtained considering the 
worst case for pond stability which, as mentioned 
before, occurs when no energy is extracted from the 
lower convective zone. 

It can be seen that the marginal state lbr the onset 
of oscillatory motion for a poor transparency pond is 
below the corresponding marginal state for a good 
transparency pond, though the difference between the 
two curves decreases for high values of the salinity 
Rayleigh number Rs as generally found in solar ponds. 
This means that to maintain the nonconvectivity of 
the gradient zone for the same value of R, one needs 
to have greater salinity gradients in poor transparency 
ponds. 

Figure 3 also shows that the marginal states 
obtained in the present analysis are very close to the 
ones obtained earlier by Veronis [l], except the special 
cases of small values of R, number, where the present 
analysis is more restrictive than the results obtained 
by Veronis [1]. The zone where periodic motions can 
occur is shown in Fig. 4 by the intersection of the half- 
planes defined by equations (96) and (97). 

1 0  7 : 

Onset of instability comparison 

106 

105 

~g 

1 0  4 

103 

102 
102 

s / E q u a t i o n  (87) p~ = 0.2 

.... EquatiOn (87) ix = 0.8 

Veronis i;2]-Equation (25) 

103 104 l05 106 107 
Rs 

Zoom for small values of Rayleigh number 
103 ..... , 

. . - --  " / 

,¢ 

Equation (87) lu, = 0.8 

Veronis [2] Equation (25) 

102 I J i r i i i 

102 103 
Rs 

Fig. 3. Onset of instability comparison /~ = 0.8, # = 0.2 
) = 2.1298 and Veronis criteria. 

Limits of periodic motion 
107 
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103 • i  • . o . .  

,~ Equation (96) 
• r  

1 0  2 i i l l r ~ t r l  i l i H H .  i J r l l n l l  J J J I H . I  J I J r l r l  

102 103 104 105 106 107 
RS 

Fig. 4. Limits of periodic motion # = 0.8; 2 = 2.1298. 
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Figure 5 represents the marginal state for the onset 
of oscillatory motion [equation (87)], and the mar- 
ginal state for steady convective motion [equation 
(91)] for/~ = 0.8. The instability proceeds through a 
periodic motion, from a region delimited by equation 
(87), until it reaches the steady convection motions 
whose marginal state is represented by equation (91). 

Rs > 1.1257Ra for~ = 0.8. (105) 

In practical terms, the fact of having considered the 
absorption of  radiation in the solar pond leads to the 
conclusion that less salt is required to maintain the 
nonconvectivity of  the gradient layer, as compared 
with the amount of salt required by Veronis [1] 
analysis. 

COMPARISON WITH PREVIOUS STUDIES 

Other authors Veronis [1, 2], Schechter et al. [3] 
and Turner [9], provided the basis for stability studies 
in double diffusion systems, namely thermohaline con- 
vection in solar ponds. In the absence of double 
diffusive problems, the criteria for stability of a gradi- 
ent layer is obtained by setting ap/& < 0 and, taking 
in account the state equation (5), this leads to 

Rs > Ra. (101) 

According to Veronis [1], a layer of fluid with both 
gradients of salt and temperature heated from below 
is maintained stable (nonconvective) if: 

Pr+ 1 
Rs > p~-~z ga. (102) 

For  the typical values of Pr and r mentioned above, 
one can obtain 

R s > 1.14R~. (103) 

This means that, in order to keep the non- 
convectivity of the layer, the salinity gradient value 
must be at least 14% greater than the necessary value 
for the case where no double diffusive phenomena are 
present. 

In the present study the results obtained for the 
same values of Pr and z are 

Rs > 1.074Ra for # = 0.2 (104) 
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Marginal states for g 0.8 
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Fig. 5. Marginal states for stability # = 0.8 ; 2 = 2.1298. 

NONLINEAR STABILITY ANALYSIS 

The linear stability analysis performed above 
required the neglecting of second-order terms. In 
order to verify that the results obtained are at least 
qualitatively independent of these approximations a 
numerical solution of the system of ordinary differ- 
ential equations (68)-(72) was attempted. 

This kind of study, which is in line with the work 
of Mukutmoni et al. [15, 16], requires the visualization 
of the dependent variables dynamic behaviour in an 
appropriate phase space. In the present work, the 
dynamic evolution of the nonlinear is depicted in a 
properly chosen phase space. The term that cor- 
responds to velocity evolution with time is Cl(t). For 
temperature, the product of both time coefficients a~ (t) 
and a2(t) was chosen. The phase space (cj(t), 
a~ (t) 'a2(t)) is chosen taking in account the fact that 
temperature is the leading variable of the process. 

The system (68)-(72) of ordinary differential equa- 
tions was solved by a fourth-order Runge-Kutta  
method with an adaptive step size control and Gill 's 
modification for roundoff errors compensation [17]. 

Some brief comments on the results obtained will 
be presented. Equations (87) and (91) are shown in 
Fig. 5 for 2 = 2.1298, # = 0.8 and f =  0 and establish 
different zones in the (Rs, Ra) plane corresponding 
each to a particular type of motion. To each zone a 
capital letter was assigned. 

For  points (Rs, Ra) in Zone A, a sink was detected, 
meaning a stable point with a nonzero velocity. This 
zone contains steady convective motion states. 

For  points (Rs, Ra) in Zone B, instabilities are 
expected to occur which are in agreement with the 
existence of aperiodic motions, as shown in Fig. 6. 

For  points (Rs, Ra) in Zone C, the trajectories rap- 
idly fall to a point in phase space (c~ (t), a~ (t)" a2(t)) 
with zero velocity, corresponding to the steady-state 
solution. This is the pure conductive zone predicted 
by the linear analysis above. 

CONCLUSIONS 

The stability of the gradient zone of a solar pond 
was analysed taking in account solar radiation absorp- 
tion in the gradient layer. 

The gradient zone of a solar pond is typically a 
double diffusive layer and previous analyses of its 
stability have considered the situation of a layer with 
linear profiles of salinity and temperature with pre- 
scribed values for these variables at both boundaries. 



3884 M. GIESTAS et al. 

18.07 

,-% 

-16.84 
-103.97 

G(t) (velocity) 

Fig. 6. c~ (t) vs a~ (t)a,(t) in Zone B of (Rs, R,,) plane l~ = 0.8 : ,;, = 2.1298. 

107.24 

Nevertheless, in a solar pond,  the absorp t ion  of  solar 
radiat ion leads to nonl inear  tempera ture  profiles, 
These can only be obta ined by considering absorp t ion  
of  solar radiat ion and  by the imposi t ion of  flux bound-  
ary condit ions.  

The analysis of  this problem, double  diffusive layer 
with heat  generat ion and  flux bounda ry  condi t ion for 
temperature,  is performed in this paper  by solving the 
Boussinesq approximat ion  of  Navie r -S tokes  equa- 
t ions th rough  a weak formula t ion  of  the equat ions  
and  a Galerk in  method.  This method allows for a 
greater freedom of  the boundary  condi t ions  as it is 
not  too sensitive to the choice of  the trial functions 
used, provided tha t  they are realistic f rom a physical 
point  of  view. 

The marginal  states for the stability of  the layer, in 
this case, show that  a good t ransparency pond is less 
subjected to double  diffusive instabilities when com- 
pared with a poor  t ransparency pond  with the same 
temperature  gradient  in the layer. 

The results are in good agreement  with the previous 
results obta ined by Veronis [1] and  others,  though the 
considerat ion of  heat  generat ion in the layer showed 
that  the marginal  states are less restrictive, i.e. less salt 
is required to prevent  convective mot ion.  

In practical terms, this means  that  the fact of  having 
considered the radia t ion  absorp t ion  in the solar pond 
leads to the conclusion tha t  less salt is required to 
main ta in  the nonconvect ivi ty  of  the gradient  layer. 
This requires, nevertheless, experimental  evidence. 

A brief  nonl inear  analysis was also performed in 
order  to visualize in an  appropr ia te  space phase the 

dynamics of  the problem. The results were shown to 
be in agreement  with those obtained from the l inear 
analysis, leading to the conclusion tha t  the trial func- 
tions need not  be more  complex than  those tha t  were 
selected. 
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